Classify¶
Automatically classify text using a custom Text Classifier ML model trained on your data.
Perfect for applying consistent labels to text (articles, video/audio transcripts, tickets, emails, reviews, comments, etc.) based on historical patterns in your data plus the semantic meaning of your text.
Example Use Cases
- Assign labels to video/audio transcripts
- Assign categories to product descriptions
- Classify user reviews/comments by sentiment
- Categorize customer feedback by topic or product
- Flag urgent vs non-urgent customer inquiries
- Detect spam in emails or user posts
- Route support tickets to the right team (technical, billing, sales)
- Assign topic to documents or articles
Categorize vs. Classify vs. Predict
See this page for details on selecting the right endpoint for your classification task.
Endpoint¶
API Request¶
-
Required Parameters
input object
JSON object specifying a document_id or a text string to classify.
Info
-
Example (document ID):
-
Example (text string):
-
For document ID:
MinLength: 1
MaxLength: 128
-
For text string:
MinLength: 1
MaxLength: 5000
-
Text strings have a max length (characters) specified above. To classify longer texts, first add them as a document and then classify them using their
document_id
.
model_id string required
ID of your custom ML model to use for classification.
Info
- You can find the model ID in your Gainly Dashboard under Settings > Custom Models.
MinLength: 1
MaxLength: 128
Optional Parameters
max_labels integer
Maximum number of labels (classifications) to assign.
Default is
3
.Min: 1
Max: 10
version string required
Version of your custom ML model to use for classification. Default is
default
.Info
- You can find the version number in your Gainly Dashboard under Settings > Custom Models.
-
You can also mark a version as
default
in your Gainly Dashboard. -
Examples:
MinLength: 1
MaxLength: 10
-
-
POST /v20241104/classify
curl -X POST "https://api.gainly.ai/v20241104/classify" \ -H "Content-Type: application/json" \ -H "X-API-Key: YOUR_API_KEY_HERE" \ # (1)! -d '{ "input": { "type": "text", "value": "I love my original Listerine. This came properly packaged so it didn\'t leak. What more can I say. Kills germs by the millions. Great for use with my waterpick and I feel so clean." }, "model_id": "support_priority_v1" }'
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
# Prompt for AI coding assistants/IDEs (e.g., ChatGPT, Claude, GitHub Copilot, Cursor, Windsurf) Using the Gainly API: 1. Write code to call the classify operation (see OpenAPI spec: https://api.gainly.ai/v20241104/openapi.json) 2. Implement authentication using the header "X-API-Key" as described in the docs: https://docs.gainly.ai/latest/api-reference/authentication/ 3. Implement rate limit handling as described in the docs: https://docs.gainly.ai/latest/api-reference/rate-limits/ 4. Implement error handling 5. Handle the response according to the ClassifyResults schema in the OpenAPI spec
using System.Net.Http; using System.Text.Json; using System.Text; var client = new HttpClient(); var url = "https://api.gainly.ai/v20241104/classify"; var payload = new { input = new { type = "text", value = "Server is down, customers cannot access the service" }, model_id = "support_priority_v1" }; var content = new StringContent( JsonSerializer.Serialize(payload), Encoding.UTF8, "application/json" ); client.DefaultRequestHeaders.Add("X-API-Key", "YOUR_API_KEY_HERE"); // (1)! var response = await client.PostAsync(url, content); var result = await response.Content.ReadAsStringAsync(); Console.WriteLine(result);
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
package main import ( "bytes" "encoding/json" "fmt" "net/http" ) func main() { url := "https://api.gainly.ai/v20241104/classify" payload := map[string]interface{}{ "input": map[string]interface{}{ "type": "text", "value": "Server is down, customers cannot access the service", }, "model_id": "support_priority_v1", } jsonData, _ := json.Marshal(payload) req, _ := http.NewRequest("POST", url, bytes.NewBuffer(jsonData)) req.Header.Set("Content-Type", "application/json") req.Header.Set("X-API-Key", "YOUR_API_KEY_HERE") // (1)! resp, _ := http.DefaultClient.Do(req) defer resp.Body.Close() var result map[string]interface{} json.NewDecoder(resp.Body).Decode(&result) fmt.Println(result) }
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
import java.net.http.HttpClient; import java.net.http.HttpRequest; import java.net.http.HttpResponse; import java.net.URI; var client = HttpClient.newHttpClient(); var url = "https://api.gainly.ai/v20241104/classify"; var payload = """ { "input": { "type": "text", "value": "Server is down, customers cannot access the service" }, "model_id": "support_priority_v1" } """; var request = HttpRequest.newBuilder() .uri(URI.create(url)) .header("Content-Type", "application/json") .header("X-API-Key", "YOUR_API_KEY_HERE") // (1)! .POST(HttpRequest.BodyPublishers.ofString(payload)) .build(); var response = client.send(request, HttpResponse.BodyHandlers.ofString()); System.out.println(response.body());
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
const axios = require('axios'); // or: import axios from 'axios'; const url = 'https://api.gainly.ai/v20241104/classify'; const payload = { input: { type: "text", value: "Server is down, customers cannot access the service" }, model_id: "support_priority_v1" }; const headers = { 'Content-Type': 'application/json', 'X-API-Key': 'YOUR_API_KEY_HERE' // (1)! }; axios.post(url, payload, { headers }) .then(response => console.log(response.data)) .catch(error => console.error('Error:', error.message));
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
<?php $client = new \GuzzleHttp\Client(); $url = 'https://api.gainly.ai/v20241104/classify'; $payload = [ 'input' => [ 'type' => 'text', 'value' => 'I love my original Listerine. This came properly packaged so it didn\'t leak. What more can I say. Kills germs by the millions. Great for use with my waterpick and I feel so clean.', ], 'model_id' => 'support_priority_v1', ]; $response = $client->request('POST', $url, [ 'json' => $payload, 'headers' => [ 'Content-Type' => 'application/json', 'X-API-Key' => 'YOUR_API_KEY_HERE' # (1)! ], ]); echo $response->getBody();
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
import requests url = "https://api.gainly.ai/v20241104/classify" payload = { "input": { "type": "text", "value": "Server is down, customers cannot access the service" }, "model_id": "support_priority_v1" } headers = { "Content-Type": "application/json", "X-API-Key": "YOUR_API_KEY_HERE" # (1)! } response = requests.post(url, json=payload, headers=headers) data = response.json() print(data)
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
require 'json' require 'uri' require 'net/http' require 'openssl' url = URI('https://api.gainly.ai/v20241104/classify') http = Net::HTTP.new(url.host, url.port) http.use_ssl = true request = Net::HTTP::Post.new(url) request['Content-Type'] = 'application/json' request['X-API-Key'] = 'YOUR_API_KEY_HERE' # (1)! request.body = { input: { type: "text", value: "Server is down, customers cannot access the service" }, model_id: "support_priority_v1" }.to_json response = http.request(request) puts response.read_body
- Replace
YOUR_API_KEY_HERE
with the value of your API key.
- Replace
API Response¶
{
"object": "classify_result",
"url": "/v20241104/classify",
"data": [
{
"label": "urgent",
"confidence_score": 0.89,
"alternatives": [
{
"label": "normal",
"confidence_score": 0.08
},
{
"label": "low",
"confidence_score": 0.03
}
]
}
],
"input": {
"type": "text",
"value": "Server is down, customers cannot access the service"
},
"model_id": "support_priority_v1",
"version": "default",
"max_labels": 3,
"token_usage": {
"semantic_tokens": 69,
"llm_tokens": {
"llm_output_tokens": 0,
"llm_input_tokens": 0,
"model": null
}
},
"livemode": true
}
Label¶
label
indicates the classification assigned by the custom model to the input text. confidence_score
is the probability score (0-1) assigned by the custom model to the predicted label. alternatives
is a list of other possible labels along with their corresponding probability scores.
This example is from a model that was trained to assign a priority to support tickets based on the ticket text, and assigns a label of urgent
, normal
or low
.